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Abstract 

The mathematical description of the quiescent settling of flocculating dis- 
persions requires a proper treatment of the breakage of unstable particles. So far 
all published models assume a particular breakage mechanism. In this paper a 
more general analysis is presented. allowing for a comparison of the effect of 
different breakage models on the settling velocity, through the definition of a 
breakage function that represents mathematically any postulated breakage 
model. 

INTRODUCTION 

The most simple example of a clarifier is the quiescent column, 
realized in the laboratory by a cylinder containing the dispersion. 

Generally, flucculation occurs during settling due to collisions between 
particles settling at different speeds. This process increases the dispersion 
global settling velocity, measured, for example, as the change with time of 
the mass of solids at the column bottom. In fact, in laminar flow, the 
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21 44 REIS, JERONIMO, AND WILSON 

settling velocity of individual spherical particles is proportional to the 
square of the particle radius, which shows how a fast flocculating process 
may lead to very high global settling velocities of the dispersion. 

In the most general case, however, the growth of particles is limited 
because of disruption of the fragile aggregates by viscous drag forces, 
which increase with particle velocity relative to the liquid. The mathe- 
matical description of flocculent settling involves, therefore, the well- 
known equations describing the aggregation process and a proper 
treatment of the breakage of composite particles that exceed the 
maximum allowable size. This maximum stable size is a function of the 
interaction between elementary interparticle forces and the parameters 
determining the hindered settling velocities of the aggregates, such as 
liquid viscosity and density, solids density, and particle volume fraction 
(e.g., parameters determining viscous drag forces). 

The purpose of this paper is to describe a mathematical model of 
quiescent settling, intending to be more general than previous models, 
namely that proposed by one of the authors and his coworkers (1). 

PREVIOUS MODELS 

In 1972 Chang (2) considered the quiescent column divided into many 
cells arrayed vertically, with spherical particles distributed homogene- 
ously throughout each cell. Change of concentration C(nJ) of particle 
size n (aggregate of n elementary particles) in cellj is due to: 

(a) Input of n particles, coming by gravity settling from cellj + 1, just 
above the cell of interest. 

(b) Output of n particles by gravity settling from cellj to cellj - 1, just 
below the cell of interest. 

(c) Formation of n particles in cell j by aggregative collisions of k 
particles and m particles such that m + k = n. 

(d) Formation of n particles in cell j by breakage of i particles 
exceeding the maximum stable size N (e.g., formation of n particles by 
breakage of aggregates i = m + k > N formed by collisions between 
particles m Q N and k < N). 

(e) Disappearance of n particles in cell j through collisions n + k ,  
k = l , 2  ,..., N .  

Chang has considered a hypothetical breakage mechanism, assuming 
that an  i particle exceeding the maximum stable size N shears apart into a 
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MATHEMATICAL STIMULATION OF QUIESCENT SETTLING. I 2145 

maximum sized particle and another with the remainder size: i --+ N + 
(i - N). 

In 1978 Wilson and coworkers ( I )  proposed the following continuity 
equation to describe flocculent settling: 

N-n N 

+ C n(r ,  + rj)' I U, - U, I C,Ci - C ki, j-n.  C,(l + 6,,,-,) 
j =  I , = " + I  

j =  I 

c k  = C,(x$) = numerical concentration of k particles, number of particles 

vk = uk(x,t) = velocity of a k particle relative to the column 
r, = radius of a k particle, assumed spherical 
x = spatial coordinate, distance down from liquid top 
t = time 
[n/2] = greatest integer < n / 2  
6 , , = 1 i f k = m , = O i f k # m  
kErn-, = rate constant for the breakage of an m particle into an n particle 

per unit of volume 

and an (m - n )  particle 

In Eq. (1) the first term on the right-hand side is the divergence of the 
numerical flux of particles due to gravity fall through the liquid 
(corresponding to input and output of particles to and from a compart- 
mentj, if we partition the column into a finite number of compartments); 
the first summation accounts for the production of n particles per unit of 
time and volume through collisions of other particlesj and n - j ;  the 
second summation describes the disappearance of n particles per unit of 
time and volume due to collisions with others; the last two summations 
introduce into this material balance the breakage of aggregates due to 
viscous drag forces, assuming a first-order rate law whose rate constant 
k;,,-, for the breakage of an m particle into an n particle and an (m - n )  
particle was supposed to be proportional to the number of ways in which 
the m elementary particles can be combined into two groups, respectively, 
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2146 REIS, JERONIMO, AND WILSON 

of n and (rn - n )  of those particles (so the first of these two summations is 
the number of n particles produced per unit of time and volume by 
breakage of all the otherj particles,j > n,  and the last one is the number 
of n particles disappearing per unit of time and volume due to the 
postulated first-order breakage kinetics). Wilson (3) has proposed the 
following equation for kij - , , :  

k j .  = K  j j  ! " / 2 ] ! ( N  - "/2])! 
n J - n  n ! ( j  - n)!"! 

where K is a proportionality constant and [N/2] is the greatest integer less 
than or equal to N/2. 

In Eq. (1) the velocity u, in the divergence term is necessarily a velocity 
relative to the settling column. The absolute values of the differences 
(u, - u,,-,) and (u, - 0,) may be calculated using either velocities relative 
to the column, uk, or velocities relative to the liquid, uk, since uj - urn = 
uj - urn. 

To evaluate the hindered settling velocities, Wilson and coworkers ( I )  
used the following relations. If the numerical concentrations of indi- 
vidual particles, C,, are known, the particle volume fraction C is 

N 

c =  c C,V, 
n = I  

(3)  

where Vn is the volume of an n particle. 

fraction is C may be calculated by Vancl's (4) equation 
The viscosity of the dispersion at a point where the particle volume 

where qo is the pure liquid dynamic viscosity. 

equating the apparent weight of the particle to the viscous drag force 
The hindered settling velocity relative to the liquid, u,, was obtained by 

where CD = drag coefficient based on the properties of the dispersion 
pn = density of n particles 
pd = density of the dispersion, calculated as a function of dry 

particles density, ps, pure liquid density, pot and dry solids 
volume fraction, C', by 
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MATHEMATICAL STIMULATION OF QUIESCENT SETTLING. I 2147 

The drag coefficient may be calculated in a variety of ways, and Wilson 
et al. ( I )  adopted (5) 

+ 0.34 24 
Re 

c,=-+-- (7) 

where Re is the Reynolds number based on the properties of the 
dispersion and the velocity relative to the liquid, 

On substituting C, and Re in Eq. (9, the following relation results: 

which is easily solved for u, by iteration. 
The velocity relative to the laboratory was shown ( I )  to be given by 

N 

U n  = u,  - c uiciv, 
i = I  

Finally, in this description of the model of these workers for quiescent 
settling, we must discuss the relation used to calculate the volume V, of 
one n particle. If no liquid was occluded in the composite particles, V, 
would be n times the elementary particle volume: 

If some liquid is occluded, Eq. ( I  I) no longer applies, but instead it can 
be supposed 

and for the radius 

r,  = rlnf’3 (13)  
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2140 REIS, JERONIMO, AND WILSON 

where f is a factor first proposed by Vold (6).  Wilson et al. (I) have 
assumed f = 1.29, as was suggested by Vold. 

On the basis of Eq. (12), the density of an n particle to be introduced in 
Eq. (9) is given by 

P n  = Po + (P, - Po)n'-f (14) 

PROPOSED MODEL 

Introduction 

The mathematical treatment proposed in this paper to describe the 
quiescent settling of flocculating dispersions has as its objective the 
generalization of the earlier treatments, mainly with regard to the floc 
breakage process. 

As mentioned earlier, Chang (2) has assumed a particular breakage 
mechanism in which the unstable aggregate i (i > N) shears apart into a 
maximum-sized aggregate of N particles and a second aggregate con- 
taining the remaining elementary particles. Symbolically: 

i+N + ( i  - N) 

As can be argued intuitively (and as will later be demonstrated), this 
hypothesis leads to a settling simulation in which the distribution of 
particle sizes rapidly becomes dominated by maximum-sized aggregates. 
It is not obvious that such a hypothesis applies to the settling of a given 
flocculating dispersion. Even if this breakage model applies to the 
settling of many dispersions, formally speaking it is a specific breakage 
model among many possible ones. 

Equation (1) proposed by Wilson and coworkers ( I )  implicitly includes 
another specific breakage mechanism of the oversized aggregates, e.g., the 
aggregates whose size exceeds N.  In fact, to ignore in the second 
summation of Eq. (1) the possibility of collisions of n particles with j 
particles such that n + j  exceeds N (notice that the summation is done 
from j = 1 to j = N - n )  is equivalent to admitting that from those 
collisions which physically are expected to occur, oversized particles 
result which break up immediately by reconversion to the original stable 
particles. Schematically, 

nocc. . n + j 3 1 ( > N ) b z - n  + j  
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MATHEMATICAL SIMULATION OF QUIESCENT SETTLING. I 2149 

Additionally, Eq. (1) includes, through the last two summations, a 
breakage kinetics of the stable aggregates (n GN). 

If the maximum stable size N is defined as the maximum number of 
elementary particles that can stably hold together in the face of the 
interaction between the adhesive forces and the viscous disruptive forces, 
we must ignore this breakage mechanism of the stable particles. This is 
equivalent to assigning zero values to the probabilities of breakage of 
these particles, or to consider as effectively stable all particles whose size 
is less than the so-defined maximum stable size. In this paper we adopt 
these ideas and consequently classify all the n particles such that n < N as 
legal or stable particles and the i particles such that i > N as illegal or 
unstable particles. 

The following mathematical formulation describes the breakage 
process generally through the introduction of a breakage function that 
may be expressed as a function of the independent breakage probabil- 
ities. This formulation will enable us to analyze the effect of different 
breakage models, and eventually to adopt a breakage model to the 
experimental observations for the settling of a given dispersion. None of 
the previous mathematical studies of quiescent settling has allowed this 
comparison. 

Hypotheses 

(a) The elementary and the composite particles are spherical. 
(b) The particle sizes are big enough to ignore the contribution of 

perikinetic flocculation, e.g., the flocculation due to Brownian motion. 
The flocculation due to velocity gradients in the liquid is also 

neglected. 
The aggregation process is entirely caused by the gravitational collision 

mechanism in which particles falling vertically encounter other particles 
falling with lower velocities. 

(c) A maximum stable size N is defined as the critical number of 
elementary particles in an aggregate above which the viscous drag forces 
necessarily break up the aggregate, and below which the aggregate is 
effectively stable. 

From the collision between two stable particles k and j ,  a stable particle 
may result (k  + j  <N) or an unstable one (N + 1 < k + j  < uv); a 2N 
particle can never be produced since the collision N + N between two 
particles falling at the same velocity is impossible in view of Hypothesis 
(b). More generally, if k = j ,  the number of particles k + j  produced is 
zero. If the orthokinetic flocculation mechanism due to velocity gradients 
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21 50 REIS, JERONIMO, AND WILSON 

operates, collisions between equally sized particles are possible. In what 
follows we speak eventually of 2lV particles although we know that they 
cannot be produced by the gravitational flocculation mechanism, but the 
breakage functions so derived will apply when such particles can be 
formed. 

(d) The unstable particles suffer immediate breakage into two particles, 
one of which is necessarily stable; the other one may be stable or 
unstable, and if it is unstable, it will suffer immediate breakage; and so 
on, until all the particles resulting from the disruption are stable. 

The number of stable particles of each size 1, 2, 3, 4,. . ., n , . .  ., N 
produced by breakage of an unstable i particle is a function of the nature 
of the dispersion and may generally be described by the probabilities 
associated to each breakage process i-k + (i - k) .  

A breakage function F(i,n) is introduced, defined as “the number” of 
stable n particles produced by breakage of a single unstable i particle. If 
Qi is the total number of unstable i particles generated per unit of time 
and volume, the total number of stable n particles returning to the 
flocculent settling process per unit of time and volume from the breakage 
of the i particles is QiF(i,n). 

(e) Concentrations C, are considered uniform in each transverse 
section of the quiescent column. They are functions of a single spatial 
coordinate x (Fig. 1). 

L 

- - -_ -  -- -- - - --. 
FIG. 1. Material balance on the volume element A h  during the quiescent settling of a 

dispersion. 
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Derivation of the Model Equations 

Let us consider a dispersion with particles of sizes 1, 2,.  . . , n , .  . . , N 
contained in a cylinder of cross-sectional area A (Fig. 1). 

On the basis of Hypothesis (e), radial diffusion is neglected. Axial 
diffusion is also ignored, since particles are supposed to have sizes big 
enough to be insensitive to the liquid thermal motion (Hypothesis b). 

The material balance on the element of volume A A x  is verbally 
expressed as “The increase in the number of n particles per unit of time is 
equal to the number of n particles entering into the element per unit of 
time through the section of coordinate x ,  minus the number of n particles 
leaving the element per unit of time through section of coordinate 
x + A x ,  plus the number of n particles generated per unit of time in the 
element due to flocculation and breakage.” Or, mathematically: 

S ( A A x )  = (C,un)lJ - (C,,un)lxthA + C , , A A x  (15) 
at 

where C, is the net number of n particles generated per unit of time and 
volume by flocculation and breakage in the element A A x .  

On dividing by A A x  and passing to the limit as Ax-wO, one obtains 

Since the number of collisions of i particles withj particles per unit of 
volume and time, N,, is (7) 

N;, = n(r; + rj)’ 1 u j  - uj I c;c, 
the generation function Ce is expressed as 

.I = I 

N 

- c na(r, + Tj)’  I u,  
. j=  I 
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where a is the effectiveness factor. 
The first summation considers all collisions producing n particles, 

representing the number of n particles produced by flocculation per unit 
of volume and time. As, generally, only a fraction of these collisions is 
aggregative, a factor of effectiveness, a Q 1, was included. 

The second summation calculates the number of n particles consumed 
in the flocculation process per unit of volume and time. The summation 
runs fromj = 1 to N to account for all possible collisions of the n particles 
with other stable aggregates. 

Finally, the double summation calculates the number of n particles 
produced per unit of volume and time by breakage of all unstable k + j 
aggregates (N + 1 < k + j Q uv). As explained before, the production of 
unstable particles k + j  is zero when k = j .  The equals sign in the above 
condition k + j Q 2N was considered only for the sake of generality, since 
the condition N + 1 Q k + j < 2N would include the other irrelevant cases 
corresponding to k = j .  

Because each collision is considered twice in this formulation, a factor 
of 4 is required. 

This way to express the number of n particles produced by breakage 
generally is based on the breakage function F(i,n) defined in Hypothesis 
( 4 -  

A system of continuity equations results from the substitution of C, in 
Eq. (16): 

n = 1, 2 , .  . . , N (19) 

Now it is necessary to derive an expression for the breakage function 
F(i,n). But first, some specific breakage functions will be presented. 

Two Particular Breakage Functions 

Argaman and Kaufman (8) concluded that the breakage mechanism of 
activated sludge flakes is the surface erosion of those flakes, producing 
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small particles that return to the flocculation process. A model for this 
situation is to assume that those small particles are the elementary 
particles in our discrete representation of the dispersion by aggregates of 
one to N elementary particles. We may therefore define a particular 
theoretical breakage model, called the surface erosion of elementary 
particles, characterized by the schematic process i+N + mxl in which an 
unstable i particle (i = N + m) breaks up, producing a particle of the 
maximum size and m elementary particles. Notice that according to 
Hypothesis (d) this global process is a sequence of the following infinitely 
fast partial processes: 

i+(i - I )  + 1 

(i - Partial l)+(i - 2 )  + 1 

(i - m + I )+( i  - m )  + 1 or ( N  + 1)+N + 1 

Global i+N + mxl  

One 1 particle (elementary particle) is eroded successively from the 
unstable particles i, (i - l), (i - 2),  . . . , (N + 1 ) ;  the global result is the 
production of an N particle and m 1 particles. 

The breakage function for this model is 

ifn # 1 andn # N  
F(i,n) = {' ifn = N (20) 

i - N  ifn = 1 

As already pointed out, Chang (2) has adopted the breakage model 

i+N + ( i  - N )  

where an unstable i particle produces an N particle and an (i -N) 
particle. 

The breakage function for this model is also easy to calculate: 

0 i f n f N a n d n Z i - N  
F(i,n) = 1 i f ( n  = N o r n  = i - N) andi  # 2N (21) { 2 i f n  = N a n d i =  2N 

Equations (21) have been written for the more general case wherein 
collisions between equally sized particles are also possible, to make this 
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breakage function applicable to the simulation of clarifiers where 
velocity gradients play a role in the flocculation process (allowing the 
aggregation of equal-sized particles). In similar fashion all breakage 
functions to be presented will be expressed for unstable i particles of the 
whole range N + 1 < i < 2N. 

General Equation for the Breakage Function 

Any breakage mode for an unstable i particle, i+j + (i - j ) ,  has a certain 
probability P ( i j )  of occurring. This breakage mode may actually take 
place in a variety of ways, since t h e j  particle and the remaining (i - j )  
particle may result from many combinations of the i elementary particles 
in the unstable i particle. Any of these combinations is a possible 
breakage event associated with that breakage mode, and it is obvious that 
the probability of occurrence of such a mode will be dependent on this 
number of possible events. 

It is immediately evident that 

P ( i j )  = P(i,i - j )  (22) 

since the number of events producingj particles from i particles is equal 
to the number of events producing ( i  - j )  particles from i particles. 

The number of n particles produced by breakage of an i particle, F(i,n), 
is the sum of the probabilities of all breakage sequences producing n 
particles, with the last term multiplied by 2 if the last breakage mode in 
the sequence has the form ( 2 n b n  + n. 

Considering all those sequences, one obtains Eq. (23) ,  the general 
expression for the breakage function: 

i - N - 3  i - N - 2  i - N - I  

+ C 1 1 (P(i,i - j , ) ~ ( i  - j , , i  - j , ) ~ ( i  - j2 , i  - j ,) 
j l = l  j z = j l + l  j 3 = j 2 + l  
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+ i - i - p  i - N - p + l  I - N - p + k  - I i - N -  1 

j l  = I j l = j l  + 1 j k ' j k -  I +  I j p = j p - l + l  

X P(i  -J,,i - J 2 ) P ( i  -Jl,i - j , ) .  . . P(i - j k - l , i  - J k )  

. . . P(i - j,,,n)(l + & i - j p . l , , ) ]  + . . . 

X P(i - j l , i  - j 3 ) .  . . P ( i  - j k - l , i  - j k ) .  . . P ( i  - j i - N - l , n )  

In this equation it is implicit that when the superior subscript of the 
first summation in a multiple summation is zero, this multiple summa- 
tion and all the others following in the equation are zero. 

Although computationally irrelevant, it is possible to give a compact 
form to Eq. (23). Introducing the conditioned subscripts summation S as 
the sum of all terms obtained when the subscripts assume all possible 
combinations of positive integer and zero values satisfying the set of 
conditions expressed below the symbol, Eq. (23) may be written as 

The following obvious convention must apply to Eq. (24): when p = 0, 
the productorium in the square brackets is equal to 1 (a zero terms 
product is the neutral element of multiplication). 

Values of F(i,n) calculated by Eq. (23) must obey the conservation 
equation 

N C ~ ( i , n ) n  = i ( 2 5 )  
n = I  

stating the trivial fact that the number i of elementary particles in the i 
particle must be conserved when this particle breaks into F( i , l )  1 particles 
plus F(i,2) 2 particles plus . . . , plus F(i,N) N particles. 
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Equiprobable Breakage Model 

In this section we will compute the breakage function for another 
particular breakage model, defined by the following condition: all 
breakage events are possible and have the same probability. 

For this case 

where 'C, is the number of combinations of i elementary particles to form 
k particles. 

On the basis of Eqs. (26) and (23), the values of F(i,n) may be easily 
computed. Table 1 shows those values for N =  10. They obey the 
conservation equation (Eq. 25) for all possible i particles. 

The Breakage Function Equivalent to the Ignoring of Collisions 
between Particles n and j Such That n + j > N 

As mentioned above,Eq. (1) due to Wilson and coworkers ( I )  ignores 
collisions between particles n and j such that n + j  exceeds the maximum 
size N. In fact, the second summation is done fromj = 1 t o j  = N - n.  

Since those collisions are physically expected to occur, this is 
mathematically equivalent to supposing that they really take place and 
the unstable aggregates produced break-up into the same original stable 
aggregates n a n d j  according to a breakage function consistent with such 
an hypothesis. 

Let us now calculate this breakage function and show that Eq. (1) is a 
particular case of Eq. (19) (if, according to Hypothesis c, the two 
summations in Eq. (1) are excluded). 

Equation (1) may be written 

N-n 

at ax j =  I ] = 1  

last 

27) 

where G(p,q) is the number of aggregative collisions between particles p 
and q occurring per unit of volume and time: 
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TABLE 1 
Values of the Breakage Function, F(i,n), Computed for the Equiprobable Brcakage 

Model. N = 10 

i 

11 
11 
1 1  
11 
11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
14 
I4 
14 
14 
14 
14 
14 
14 
14 
14 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.010753 
0.053763 
0.161 290 
0.322581 
0.45 161 3 
0.45 161 3 
0.322581 
0.161290 
0.053763 
0.010753 
0.004834 
0.026562 
0.088456 
0.198833 
0.317824 
0.738708 
0.3 17206 
0.198061 
0.087941 
0.026357 
0.003395 
0.020156 
0.073 194 
0.181 379 
0.323897 
0.429995 
0.426 199 
0.317987 
0.175906 
0.070130 
0.001857 
0.01 1433 
0.043584 
0.114975 
0.222049 
0.327105 
0.708212 
0.311314 
0.205 1 11 
0.101776 
0.001969 
0.01 1766 
0.044177 
0.116985 
0.232033 
0.366698 
0.43 1852 
0.414047 
0.313737 
0.185470 

16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.001886 
0.010612 
0.037560 
0.094591 
0.1 81 900 
0.296184 
0.350924 
0.689430 
0.305 164 
0.208086 
0.002894 
0.015614 
0.052399 
0.124056 
0.2243 13 
0.363730 
0.41 1441 
0.435924 
0.398650 
0.3053 19 
0.003132 
0.0 16580 
0.054024 
0.122505 
0.209266 
0.332639 
0.348889 
0.364884 
0.663068 
0.294054 
0.004574 
0.024077 
0.077542 
0.172054 
0.283297 
0.441495 
0.429698 
0.428600 
0.4181 80 
0.376067 
0.004563 
0.024044 
0.077311 
0. I703 I9 
0.275495 
0.423709 
0.390954 
0.364966 
0.35 122 1 
0.629701 
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2158 REIS, JERONIMO, AND WILSON 

On using this notation, the proposed equation (Eq. 19) becomes 
I n 4  N 

at ax , = I  J =  I 

N N  1 - - 1 C G ( k J ) F ( k  + j ~ )  = 0 
k - 1  . i = N - k t l  

Three obvious properties of C@,q) must be kept in mind: 

1) Gba) = G(qJJ) 
2 )  G(p,q) = 0 if p = q 
3 )  G(p,q) = 0 ifp > N o r  q > N,  since the concentration of particles that 

exceed N is zero. 

The number of unstable i particles (N  + 1 Q i Q uv) produced per unit 
of volume and time is 

. N  

and the number of stable n particles per unit of volume and time into 
which these i particles immediately break up is 

But this quantity is equal to G(n,i - n) because, by the breakage logic 
implicit in Eq. (27), the number of n particles produced is exactly the 
number of n particles that have collided with ( i  - n) particles to produce 
the unstable i particles. Hence, one obtains 

(30) 

It is now interesting to demonstrate that with the derived Expression 
(30) for the breakage function, Eq. (29) transforms into Eq. (27). This is 
the same as showing that 
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MATHEMATICAL SIMULATION OF QUIESCENT SETTLING. I 2159 

or 

N N  

( 3 2 )  
1 ? G(n,J) 2 G ( k , j ) F ( k  + j , n )  

j = N - n +  I k = l  j=N-kil 

On developing the second member of Eq. (32),  one obtains 

+ G(N,I)]F(l + N , n )  + (G(2,N) + G(3JV - 1 )  + * - + G ( N , 2 ) ]  

X F ( 2  + N , n )  + [G(3,N) + G(4,N - 1) + * - * + G ( N , 3 ) ]  

Substituting all F ( k  + N,n), according to Eq. (30), or more explicitly, 

G(n,k + N - n) 
i [C(k ,N)  + + * * + G ( N , k ) ]  

F ( k  + N,n)  = (34) 

into Eq. (33),  the following results for the development of the right 
member of Eq. (32): 

N N  
1 - G ( k j ) F ( k  + j , n )  = G(n,l + N - n )  + G(n ,2  + N - n )  
k=l j=N-k+l 

But in this sum all terms such that k + N - n > N are null (Property 3 of 
G@,q)). So, k + N - n assumes values from 1 + N - n to N,  and the right 
member of Eq. (32) becomes 

G(n,l  + N - n )  + G(n,2 + N -. n )  + * 
+ + G(n,N) 

which is just the development of the left member. Equation (27) is, then, a 
particular case of Eq. (29). 
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Definition of a Breakage Model by the Minimum Number of 
Independent Probabilities 

The erosion of elementary particles, breakage with formation of an N 
particle and an (i - N) particle, and equiprobable breakage are three 
specific breakage models among an infinity of other possible ones. 
Generally, a breakage model will be defined by the values of all 
probabilities P ( i j ) .  Nevertheless, only the independent entities P(iJ) 
need to be defined, the others being determined by the equations 

P ( i J )  = P(i,i - j )  (35) 

The total number P of entities P ( i j )  (i = N + 1, N + 2,. . . , W,J = 1, 
2, ..., i -  l ) is(9)  

N ( 3 N -  1) N 

P = N 2 +  2 ( k -  1 ) =  
k = l  2 (37 )  

I t  is also easy to show (9) that the number I of independent 
probabilities is 

where, as usual, [(N + k) /2 ]  is the greatest integer < (N + k) /2 .  
The best way to use Eq. (23) to compute the breakage function as 

defined by setting the probabilities is to make the computer read as data 
the I independent values p(iJ) (i = N + 1 ,  N + 2 , .  . . , UV, j = 1 , 2 , .  . . , [i/ 
21 - I),  and then to apply Eqs. (35) and (36) to obtain all other P ( i j )  
values. An algorithm to compute F( in)  by Eq. (23) is very easy to establish 
if all P ( i j )  values are available. 

CONCLUSIONS 

All previous mathematical treatments of quiescent settling of floccula- 
ting dispersions have postulated a particular breakage model. The 
proposed Eqs. (19) are general with regard to the breakage process. In 
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MATHEMATICAL SIMULATION OF QUIESCENT SETTLING. I 2161 

fact, no particular breakage model is postulated and it is possible to study 
theoretically the influence of breakage on the settling velocity by the 
introduction of the proper breakage function F(i,n). 

In several simple cases for the surface erosion of elementary particles, 
the breakage where an unstable i particle produces an N particle and an 
(i - N) particle, equiprobable breakage, and breakage equivalent to 
ignoring collisions between particles n and j ,  such that n + j  > N,  the 
breakage function has been easily obtained. 

It  is also possible to define an infinity of other breakage models by 
setting a number Z of probabilities P ( i j )  as given by Eq. (38). Then, after 
calculating all other P( i , j )  values by Eqs. (35) and (36), one obtains the 
breakage function by use of Eq. ( 2 3 ) ,  after which quiescent settling may 
be simulated. 

The integration of the proposed Eqs. (19) has been done by Reis ( 9 )  in 
comparing several breakage models; this will be discussed in a following 
paper. This work shows the intuitively expected influence of the breakage 
model on the particle size distributions along the settling column, which 
is responsible for the global settling velocity, and it appears that this 
mathematical formulation is a very useful tool for the theoretical study of 
the settling of flocculating dispersions. 

SYMBOLS 

cross-sectional area of the settling column 
wet solids volume fraction 
drag coefficient based on the dispersion properties 
numerical concentration of n particles 
concentration of n particles i n  cell or compartmentj 
number of combinations of n elementary particles to fo rmj  
particles 
dry solids volume fraction 
number of n particles generated by flocculation and breakage 
per unit of volume and time 
n particle diameter 
breakage function: number of n particles produced by break- 
age of one i particle 
vold factor 
number of gravitic aggregative collisions between the p 
particles and the q particles per unit of volume and time 
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REIS, JERONIMO, AND WILSON 

gravitational constant 
number of independent entities P ( i j )  
constant in Eq. (2) 
velocity constant for the breakage of a j  particle into an n 
particle and a ('j - n )  particle in Eq. (1) 
maximum size of particles (number of elementary particles in 
the biggest aggregate) 
number of collisions of i particles withj particles per unit of 
volume and time 
size of particles under material balance 
total number of entities P ( i j )  
probability of occurrence of the breakage mode i+j + (i - j )  
Reynolds number based on the dispersion properties 
n particles radius 
time 
velocity of n particles relative to the liquid 
wet volume of an n particle 
dry volume of an  n particle 
velocity of n particles relative to the laboratory 
spatial coordinate: distance down from the top of the settling 
column 

collisions efficiency of aggregation 
Kronecker delta 
porosity 
pure liquid dynamic viscosity 
dispersion dynamic viscosity 
pure liquid density 
dispersion density 
dry particle density 

Other Symbols 

[XI greatest integer GI' 
1x1 absolute value of X 
AX variation of variable X 
n productorium 
z summation 
& conditioned subscripts summation 
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