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Abstract

The mathematical description of the quiescent settling of flocculating dis-
persions requires a proper treatment of the breakage of unstable particles. So far
all published models assume a particular breakage mechanism. In this paper a
more general analysis is presented, allowing for a comparison of the effect of
different breakage models on the settling velocity, through the definition of a
breakage function that represents mathematically any postulated breakage
model.

INTRODUCTION

The most simple example of a clarifier is the quiescent column,
realized in the laboratory by a cylinder containing the dispersion.
Generally, flucculation occurs during settling due to collisions between
particles settling at different speeds. This process increases the dispersion
global settling velocity, measured, for example, as the change with time of
the mass of solids at the column bottom. In fact, in laminar flow, the
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settling velocity of individual spherical particles is proportional to the
square of the particle radius, which shows how a fast flocculating process
may lead to very high global settling velocities of the dispersion.

In the most general case, however, the growth of particles is limited
because of disruption of the fragile aggregates by viscous drag forces,
which increase with particle velocity relative to the liquid. The mathe-
matical description of flocculent settling involves, therefore, the well-
known equations describing the aggregation process and a proper
treatment of the breakage of composite particles that exceed the
maximum allowable size. This maximum stable size is a function of the
interaction between elementary interparticle forces and the parameters
determining the hindered settling velocities of the aggregates, such as
liquid viscosity and density, solids density, and particle volume fraction
(e.g., parameters determining viscous drag forces).

The purpose of this paper is to describe a mathematical model of
quiescent settling, intending to be more general than previous models,
namely that proposed by one of the authors and his coworkers (/).

PREVIOUS MODELS

In 1972 Chang (2) considered the quiescent column divided into many
cells arrayed vertically, with spherical particles distributed homogene-
ously throughout each cell. Change of concentration C(n,j) of particle
size n (aggregate of n elementary particles) in cell j is due to:

(a) Input of n particles, coming by gravity settling from cell j + 1, just
above the cell of interest.

(b) Output of n particles by gravity settling from cell j to cell j — 1, just
below the cell of interest.

(¢) Formation of n particles in cell j by aggregative collisions of k
particles and m particles such that m + k = n.

(d) Formation of n particles in cell j by breakage of i particles
exceeding the maximum stable size N (e.g., formation of n particles by
breakage of aggregates i =m + k> N formed by collisions between
particles m <N and k <N).

(e) Disappearance of n particles in cell j through collisions n + k,
k=12...,N.

Chang has considered a hypothetical breakage mechanism, assuming
that an i particle exceeding the maximum stable size N shears apartinto a
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maximum sized particle and another with the remainder size: i - N +
i—N).

In 1978 Wilson and coworkers (/) proposed the following continuity
equation to describe flocculent settling:

{n/2]
= 2 n(r+ 1)y = 0,51CC,

J=1

C, , Av,Cy)
or T ox

N-=n
+ > n(r, + r)tv, = v,|C,C; - Z ki Ci(1 + 8,52,

i=1 Jj=n+1

1n/2}

+Zk,,,_] n=1,2,...,N (D)

In Eq. (1),

C; = Ci(x#) = numerical concentration of k particles, number of partlcles
per unit of volume

v, = ux.) = velocity of a k particle relative to the column

r, = radius of a k particle, assumed spherical

x = spatial coordinate, distance down from liquid top

t = time

[n/2] = greatest integer < n/2

Sm=1ifk=m =0ifk+m

k... = rate constant for the breakage of an m particle into an n particle

and an (m — n) particle

In Eq. (1) the first term on the right-hand side is the divergence of the
numerical flux of particles due to gravity fall through the liquid
(corresponding to input and output of particles to and from a compart-
mentj, if we partition the column into a finite number of compartments);
the first summation accounts for the production of n particles per unit of
time and volume through collisions of other particles j and »n —j; the
second summation describes the disappearance of n particles per unit of
time and volume due to collisions with others; the last two summations
introduce into this material balance the breakage of aggregates due to
viscous drag forces, assuming a first-order rate law whose rate constant
k.-, for the breakage of an m particle into an n particle and an (m — n)
particle was supposed to be proportional to the number of ways in which
the m elementary particles can be combined into two groups, respectively,
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of n and (m — n) of those particles (so the first of these two summations is
the number of » particles produced per unit of time and volume by
breakage of all the other j particles, j > n, and the last one is the number
of n particles disappearing per unit of time and volume due to the
postulated first-order breakage kinetics). Wilson (3) has proposed the
following equation for k7, ,_,:

o - JJVIN/2]NN = [N/2])!
mimn nl(j — n)INN!

(2)

where K is a proportionality constant and [N/2] is the greatest integer less
than or equal to N/2.

In Eq. (1) the velocity v, in the divergence term is necessarily a velocity
relative to the settling column. The absolute values of the differences
(v; — v,-;) and (v, — v,) may be calculated using either velocities relative
to the column, v,, or velocities relative to the liquid, «;, since v, — v,, =
U= Uy,

To evaluate the hindered settling velocities, Wilson and coworkers (/)
used the following relations. If the numerical concentrations of indi-

vidual particles, C,, are known, the particle volume fraction C is
N
C=2 CV, (3)
n=1

where V, is the volume of an n particle.

The viscosity of the dispersion at a point where the particle volume
fraction is C may be calculated by Vand’s (4) equation

- 1 ex (2.5C + 2.7C2> (4)
e = Mo &P AT 0.609C

where 1, is the pure liquid dynamic viscosity.

The hindered settling velocity relative to the liquid, u,, was obtained by
equating the apparent weight of the particle to the viscous drag force

> nd?
%di(pn ~pg = CDpd% 2 (5)

where Cp, = drag coefficient based on the properties of the dispersion
p, = density of n particles
p; = density of the dispersion, calculated as a function of dry
particles density, p,, pure liquid density, py, and dry solids
volume fraction, C’, by
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pa = p,C" + (1 = C)py (6)

The drag coefficient may be calculated in a variety of ways, and Wilson
et al. () adopted (5)

_ 24, 3
Cp= o+ s + 0.34 (7)

where Re is the Reynolds number based on the properties of the
dispersion and the velocity relative to the liquid,

Re = 2faltaPa (®)
uv;

On substituting C;, and Re in Eq. (5), the following relation results;

_ 2872(Pn — Pa)
Un = Pl Py O T ©)
9nd{1 + 0.25(4"—d) +0.34 —‘i}
20y 127,

which is easily solved for u, by iteration.
The velocity relative to the laboratory was shown (/) to be given by
N

v, =u, = 2 u,C,V; (10)

i=1
Finally, in this description of the model of these workers for quiescent
settling, we must discuss the relation used to calculate the volume ¥V, of
one n particle. If no liquid was occluded in the composite particles, V,
would be » times the elementary particle volume:
V,=Vn (1)

If some liquid is occluded, Eq. (11) no longer applies, but instead it can
be supposed

V,=Vn' (12)
and for the radius

r,=rn'”? (13)
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where f is a factor first proposed by Vold (6). Wilson et al. (I) have
assumed f = 1.29, as was suggested by Vold.

On the basis of Eq. (12), the density of an n particle to be introduced in
Eq. (9) is given by

pn = Po + (ps - pO)nlff (14)

PROPOSED MODEL
Introduction

The mathematical treatment proposed in this paper to describe the
quiescent settling of flocculating dispersions has as its objective the
generalization of the earlier treatments, mainly with regard to the floc
breakage process.

As mentioned earlier, Chang (2) has assumed a particular breakage
mechanism in which the unstable aggregate i (i > N) shears apart into a
maximum-sized aggregate of N particles and a second aggregate con-
taining the remaining elementary particles. Symbolically:

i—>N+ (i — N)

As can be argued intuitively (and as will later be demonstrated), this
hypothesis leads to a settling simulation in which the distribution of
particle sizes rapidly becomes dominated by maximum-sized aggregates.
It is not obvious that such a hypothesis applies to the settling of a given
flocculating dispersion. Even if this breakage model applies to the
settling of many dispersions, formally speaking it is a specific breakage
model among many possible ones.

Equation (1) proposed by Wilson and coworkers (/) implicitly includes
another specific breakage mechanism of the oversized aggregates, e.g., the
aggregates whose size exceeds N. In fact, to ignore in the second
summation of Eq. (1) the possibility of collisions of n particles with j
particles such that n + j exceeds N (notice that the summation is done
from j=1 to j =N —n) is equivalent to admitting that from those
collisions which physically are expected to occur, oversized particles
result which break up immediately by reconversion to the original stable
particles. Schematically,

. flocc. break.

n+j—i(>N)—n+j
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Additionally, Eq. (1) includes, through the last two summations, a
breakage kinetics of the stable aggregates (n <N).

If the maximum stable size N is defined as the maximum number of
elementary particles that can stably hold together in the face of the
interaction between the adhesive forces and the viscous disruptive forces,
we must ignore this breakage mechanism of the stable particles. This is
equivalent to assigning zero values to the probabilities of breakage of
these particles, or to consider as effectively stable all particles whose size
is less than the so-defined maximum stable size. In this paper we adopt
these ideas and consequently classify all the » particles such thatn <N as
legal or stable particles and the i particles such that i > N as illegal or
unstable particles.

The following mathematical formulation describes the breakage
process generally through the introduction of a breakage function that
may be expressed as a function of the independent breakage probabil-
ities. This formulation will enable us to analyze the effect of different
breakage models, and eventually to adopt a breakage model to the
experimental observations for the settling of a given dispersion. None of
the previous mathematical studies of quiescent settling has allowed this
comparison.

Hypotheses

(a) The elementary and the composite particles are spherical.

(b) The particle sizes are big enough to ignore the contribution of
perikinetic flocculation, e.g., the flocculation due to Brownian motion.

The flocculation due to velocity gradients in the liquid is also
neglected.

The aggregation process is entirely caused by the gravitational collision
mechanism in which particles falling vertically encounter other particles
falling with lower velocities.

(¢) A maximum stable size N is defined as the critical number of
elementary particles in an aggregate above which the viscous drag forces
necessarily break up the aggregate, and below which the aggregate is
effectively stable.

From the collision between two stable particles k and j, a stable particle
may result (k +j <N) or an unstable one (N + 1<k +j<2N); a 2N
particle can never be produced since the collision N + N between two
particles falling at the same velocity is impossible in view of Hypothesis
(b). More generally, if k = j, the number of particles k +j produced is
zero. If the orthokinetic flocculation mechanism due to velocity gradients
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operates, collisions between equally sized particles are possible. In what
follows we speak eventually of 2N particles although we know that they
cannot be produced by the gravitational flocculation mechanism, but the
breakage functions so derived will apply when such particles can be
formed.

(d) The unstable particles suffer immediate breakage into two particles,
one of which is necessarily stable; the other one may be stable or
unstable, and if it is unstable, it will suffer immediate breakage; and so
on, until all the particles resulting from the disruption are stable.

The number of stable particles of each size 1, 2, 3,4,..., n,..., N
produced by breakage of an unstable i particle is a function of the nature
of the dispersion and may generally be described by the probabilities
associated to each breakage process i—k + (i — k).

A breakage function F(i,n) is introduced, defined as “the number” of
stable n particles produced by breakage of a single unstable i particle. If
Q; is the total number of unstable i/ particles generated per unit of time
and volume, the total number of stable n particles returning to the
flocculent settling process per unit of time and volume from the breakage
of the i particles is Q,F(i,n).

(e) Concentrations C, are considered uniform in each transverse
section of the quiescent column. They are functions of a single spatial
coordinate x (Fig. 1).

[T eem——— =

X X+ AX

Vp (x)
o]

Asx — V7777777777 J L

Vp{x+Ax)

F1G. 1. Material balance on the volume element AAx during the quiescent settling of a
dispersion.
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Derivation of the Model Equations

Let us consider a dispersion with particles of sizes 1,2,...,n,..., N
contained in a cylinder of cross-sectional area 4 (Fig. 1).

On the basis of Hypothesis (e), radial diffusion is neglected. Axial
diffusion is also ignored, since particles are supposed to have sizes big
enough to be insensitive to the liquid thermal motion (Hypothesis b).

The material balance on the element of volume AAx is verbally
expressed as “The increase in the number of # particles per unit of time is
equal to the number of n particles entering into the element per unit of
time through the section of coordinate x, minus the number of n particles
leaving the element per unit of time through section of coordinate
x + Ax, plus the number of n particles generated per unit of time in the
element due to flocculation and breakage.” Or, mathematically:

e (4Ax) = (o[ = (Co) | ad + CpdBx (15)

where C"g,, is the net number of n particles generated per unit of time and
volume by flocculation and breakage in the element AAX.
On dividing by AAx and passing to the limit as Ax—0, one obtains

acn - - a(cnvn)
ot dx +C

(16)

Since the number of collisions of i particles with j particles per unit of

volume and time, N;, is (7)

the generation function C"g,, is expressed as
[n/2]

C, = Z na(r; + r, ) v — v, 1C,C,;

Jj=1

N
- Z na(r, + r;)’lv, — v;|C,C;

Jj=1

l - & :
+ 3 Z }: na(r, + r;)*lv, — v;| C,C; F(k + j.n) (18)
N-k+1

k=1 j
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where a is the effectiveness factor.

The first summation considers all collisions producing n particles,
representing the number of n particles produced by flocculation per unit
of volume and time. As, generally, only a fraction of these collisions is
aggregative, a factor of effectiveness, a < 1, was included.

The second summation calculates the number of n particles consumed
in the flocculation process per unit of volume and time. The summation
runs fromj = 1 to N to account for all possible collisions of the n particles
with other stable aggregates.

Finally, the double summation calculates the number of »n particles
produced per unit of volume and time by breakage of all unstable k +
aggregates (N + 1 <k +j <2N). As explained before, the production of
unstable particles k + j is zero when k = j. The equals sign in the above
condition k + j < 2N was considered only for the sake of generality, since
the condition N + 1 <k + j < 2N would include the other irrelevant cases
corresponding to k = j.

Because each collision is considered twice in this formulation, a factor
of § is required.

This way to express the number of n particles produced by breakage
generally is based on the breakage function F(i.n) defined in Hypothesis
(d).

A system of continuity equations results from the substitution of C o iDL
Eq. (16):

[n/2]
Z ﬂa(rj + r,,.j)z l Uj - Un—jl CjC,,_j

Jj=1

3C, , ACw)
or Ox

N
+ 2 na(r, + r)?lv, — vl C,C;
Jj=1

N

N
> Y maln + ) o — v, CC F(k +jn) =0,

1
2 (0 =Nk

n=1,2,....,N (19)

Now it is necessary to derive an expression for the breakage function
F(i,n). But first, some specific breakage functions will be presented.

Two Particular Breakage Functions

Argaman and Kaufman (8) concluded that the breakage mechanism of
activated sludge flakes is the surface erosion of those flakes, producing
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small particles that return to the flocculation process. A model for this
situation is to assume that those small particles are the elementary
particles in our discrete representation of the dispersion by aggregates of
one to N elementary particles. We may therefore define a particular
theoretical breakage model, called the surface erosion of elementary
particles, characterized by the schematic process i~»N + mx1 in which an
unstable / particle (i = N + m) breaks up, producing a particle of the
maximum size and m elementary particles. Notice that according to
Hypothesis (d) this global process is a sequence of the following infinitely
fast partial processes:

i>(i—1)+1
partia] (G~ D=2 41

(i-m+D>@i-m+1 or (N+1)-»N+1

Global i-N+ mx1

One 1 particle (elementary particle) is eroded successively from the
unstable particles i, ({ — 1), (i — 2),..., (N + 1); the global result is the
production of an N particle and m 1 particles.

The breakage function for this model is

0 ifn#landn #N
F(in)y=1+11 ifn =N (20)
i—N ifn=1

As already pointed out, Chang (2) has adopted the breakage model
i>N+ (i — N)
where an unstable | particle produces an N particle and an (i —N)

particle.
The breakage function for this model is also easy to calculate:

0 ifn #Nandn#i—N
F(in)=41 if(n =Norn=i— N)andi # 2N (21)
2 ifn =Nandi = 2N

Equations (21) have been written for the more general case wherein
collisions between equally sized particles are also possible, to make this
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breakage function applicable to the simulation of clarifiers where
velocity gradients play a role in the flocculation process (allowing the
aggregation of equal-sized particles). In similar fashion all breakage
functions to be presented will be expressed for unstable i particles of the
whole range N + 1 <i <2N.

General Equation for the Breakage Function

Any breakage mode for an unstable i particle, i—j + (i — j), has a certain
probability P(i,j) of occurring. This breakage mode may actually take
place in a variety of ways, since the j particle and the remaining (i — j)
particle may result from many combinations of the i elementary particles
in the unstable i particle. Any of these combinations is a possible
breakage event associated with that breakage mode, and it is obvious that
the probability of occurrence of such a mode will be dependent on this
number of possible events.

It is immediately evident that

P(i.j) = P(i,i = J) (22)

since the number of events producing j particles from i particles is equal
to the number of events producing (i — j) particles from i particles.

The number of n particles produced by breakage of an i particle, F(in),
is the sum of the probabilities of all breakage sequences producing »
particles, with the last term multiplied by 2 if the last breakage mode in
the sequence has the form (2n)—n + n.

Considering all those sequences, one obtains Eq. (23), the general
expression for the breakage function:

i~N—-1
F(i,n) = Pn) 1+ 8,5) + 2 P(ii=j)PG = jn)(1+8;5)

j=1

i~N~2 i-N-1

~N
+ 2 P(ii = jOP(U = jii = j)PU = jon)(1 + 8, 5,)

=1 jy=j1+1

i-N-3 i-N-2 i-N-1

+ > Y X AP = j)PG = i = J)PG = i = J5)

1=l Jjy=j1+tj3=jz+1

X P(l —j3,n)(l + 8:’—_1’3.2")} + -
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-N— - i—N—p+k—1 i—-N=1
M5 D SHRTRENS SR R RS
J1=1 Jja=ij+1 Jk=ik—1+1 Jp=ip-1+1

X P —ji i —J)PE = Jod —J3) oo - PG = Jr1sd —J1)
Y Ul ) e | I

1 2 3 i-N—1
+ 222 X PG IPG =i =)

J1=1jy=2j3=3 Ji-N-1=i=N-1
X P —jyl —j3) oo - PU = Joord —Ji) -« - P — Jioy-1sn)
X1+ 8,_y_ 2} (23)

In this equation it is implicit that when the superior subscript of the
first summation in a multiple summation is zero, this multiple summa-
tion and all the others following in the equation are zero.

Although computationally irrelevant, it is possible to give a compact
form to Eq. (23). Introducing the conditioned subscripts summation 2 as
the sum of all terms obtained when the subscripts assume all possible
combinations of positive integer and zero values satisfying the set of
conditions expressed below the symbol, Eq. (23) may be written as

i-N-1 P
F(in) = Z b3 {[H P(i = ji-1i Jk)]P(t — (1 + s,.__,.p_zn)}
Jjo=0 k=1
k>0
Tk Jretl 2= N=1)}
J1<ia<i3<- - - <ip (24)

The following obvious convention must apply to Eq. (24): when p = 0,
the productorium in the square brackets is equal to 1 (a zero terms
product is the neutral element of multiplication).

Values of F(i,n) calculated by Eq. (23) must obey the conservation
equation

ZA_,: F(@nyn=1i (25)

stating the trivial fact that the number i of elementary particles in the i
particle must be conserved when this particle breaks into F(i,1) 1 particles
plus F(i,2) 2 particles plus. .., plus F(i,N) N particles.
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Equiprobable Breakage Model

In this section we will compute the breakage function for another
particular breakage model, defined by the following condition: all
breakage events are possible and have the same probability.

For this case

iCn
1i/2] )
2.,

=1

P(in) =

(26)

where ‘'C; is the number of combinations of i elementary particles to form
k particles.

On the basis of Eqgs. (26) and (23), the values of F(i,n) may be easily
computed. Table 1 shows those values for N = 10. They obey the
conservation equation (Eq. 25) for all possible i particles.

The Breakage Function Equivalent to the ignoring of Collisions
between Particles n and j Such Thatn +j> N

As mentioned above,Eq. (1) due to Wilson and coworkers (/) ignores
collisions between particles # and j such that n + j exceeds the maximum
size N. In fact, the second summation is done fromj=1toj=N — n.

Since those collisions are physically expected to occur, this is
mathematically equivalent to supposing that they really take place and
the unstable aggregates produced break-up into the same original stable
aggregates n and j according to a breakage function consistent with such
an hypothesis.

Let us now calculate this breakage function and show that Eq. (1) is a
particular case of Eq. (19) (if, according to Hypothesis c, the two last
summations in Eq. (1) are excluded).

Equation (1) may be written

0C, , dw.C) & . N
9C, | 0(.Cy) _ > GGn—j)+ 2 Gnj)=0 (27)
ot ox = j=1

where G(pg) is the number of aggregative collisions between particles p
and ¢ occurring per unit of volume and time:

G(p.q) = ma(r, + r))*|v, — v,|C,C, (28)
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Values of the Breakage Function, F(i,n), Computed for the Equiprobable Breakage
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Model, N = 10
n F(in) i n F(@in)
1 0.010753 16 1 0.001886
2 0.053763 16 2 0.010612
3 0.161290 16 3 0.037560
4 0.322581 16 4 0.094591
5 0451613 16 5 0.181900
6 0.451613 16 6 0.296184
7 0.322581 16 7 0.350924
8 0.161290 16 8 0.689430
9 0.053763 16 9 0.305164
10 0.010753 16 10 0.208086
1 0.004834 17 i 0.002894
2 0.026562 17 2 0.015614
3 0.088456 17 3 0.052399
4 0.198833 17 4 0.124056
5 0.317824 17 5 0.224313
6 0.738708 17 6 0.363730
7 0.317206 17 7 0411441
8 0.198061 17 8 0.435924
9 0.087941 17 9 0.398650
10 0.026357 17 10 0.305319
| 0.003395 18 1 0.003132
2 0.020156 18 2 0.016580
3 0.073194 18 3 0.054024
4 0.181379 18 4 0.122505
5 0.323897 i8 5 0.209266
6 0.429995 18 6 0.332639
7 0.426199 18 7 0.348889
8 0.317987 18 8 0.364884
9 0.175906 18 9 0.663068
10 0.070130 18 10 0.294054
1 0.001857 19 1 0.004574
2 0.011433 19 2 0.024077
3 0.043584 19 3 0.077542
4 0.114975 19 4 0.172054
5 0.222049 19 5 0.283297
6 0.327105 19 6 0.441495
7 0.708212 19 7 0.429698
8 0311314 19 8 0.428600
9 0.205111 19 9 0.418180
10 0.101776 19 10 0.376067
1 0.001969 20 1 0.004563
2 0.011766 20 2 0.024044
3 0.044177 20 3 0.077311
4 0.116985 20 4 0.170319
5 0.232033 20 5 0.275495
6 0.366698 20 6 0.423709
7 0.431852 20 7 0.390954
8 0.414047 20 8 0.364966
9 0.313737 20 9 0.351221
10 0.185470 20 10 0.629701
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On using this notation, the proposed equation (Eq. 19) becomes

{n/2}

a: a(léxc) Z G(j.n —j) + ZG("J)
N N
LS S Gj)FGh +jm) =0 (29)
2 (S0 =Nk

Three obvious properties of G(p,g) must be kept in mind:

D G(pg) = Glgp)

2) Gpg)=0itp=¢q

3) G(pg) = 0ifp > N org > N, since the concentration of particles that
exceed N is zero.

The number of unstable i particles (N + 1 <i <2N) produced per unit
of volume and time is

N
> Gy ~j)

Jj=1

N | —

and the number of stable n particles per unit of volume and time into
which these i particles immediately break up is

(£ 3 6ui-n)Fun

But this quantity is equal to G(ni — n) because, by the breakage logic
implicit in Eq. (27), the number of n particles produced is exactly the
number of n particles that have collided with (i — n) particles to produce
the unstable i particles. Hence, one obtains

G(nl n)
-Zcm—;)

!

F(in) = (30)

It is now interesting to demonstrate that with the derived Expression
(30) for the breakage function, Eq. (29) transforms into Eq. (27). This is
the same as showing that

Z} G(n,j) = ; G(nj)— 5 kZ Z Gk j)F(k +jn) (31)

1 j=N-k+1
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or

N N
> Gnj)= Zk G(k,j)F(k + j,n) (32)
—k+1]

j=N—n+l

B —

N
2y
On developing the second member of Eq. (32), one obtains

1N
52

p2 Féﬂ Gk jYF(k +jn) = ~21— {([GAN) + GQN - 1) + - - -

+ GIN,D)IF(1 + N) + [GN) + GBN = 1)+ - - - + G(N,2)]

X F(2+Nyn)+ [GBN) + G@4N - 1) + - - - + G(N,3)]
XFGB+Nn)+ -+ -+ [GhkN)+ - - - + GINK)|F(k + Nn)

+oe ey ©(33)

Substituting all F(k + N,n), according to Eq. (30), or more explicitly,

G(nk + N—n)
HG(KkN) + - -+ + G(N k)]

F(k + Nn) = (34)

into Eq. (33), the following results for the development of the right
member of Eq. (32):

N N
Y Y Gk jHFk +jn)=Gnl +N—-n)+Gn2+N-—n)

1
24 j=N—k+1
+ - +Gnk+N-n)+ -
But in this sum all terms such thatk + N — n > N are null (Property 3 of

G(p4g)). So, k + N —n assumes values from 1 + N — n to N, and the right
member of Eq. (32) becomes

Gnl1+N-my+Gn2+N-n)+ --- +GnN)

which is just the development of the left member. Equation (27) is, then, a
particular case of Eq. (29).
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Definition of a Breakage Model by the Minimum Number of
Independent Probabilities

The erosion of elementary particles, breakage with formation of an N
particle and an (i — N) particle, and equiprobable breakage are three
specific breakage models among an infinity of other possible ones.
Generally, a breakage model will be defined by the values of all
probabilities P(i,j). Nevertheless, only the independent entities P(i,j)
need to be defined, the others being determined by the equations

P(i,j) = Pi,i — ) (35)

[£/2]
Pijy=1, i=N+1,N+2,...,2N (36)

J=i

The total number P of entities P(ij) =N+ 1,N+2,...,2N;j =1,
2,...,i—=1is(9)

N
P=N+Y (k—-1)="CN=D

37
Z 3 37)

It is also easy to show (9) that the number I of independent
probabilities is

B[

where, as usual, [(N + k)/2] is the greatest integer < (N + k)/2.

The best way to use Eq. (23) to compute the breakage function as
defined by setting the probabilities is to make the computer read as data
the 7 independent values P(,j) i =N+ 1, N+2,....2N,j=1,2,..., [i/
2] — 1), and then to apply Eqgs. (35) and (36) to obtain all other P(i,j)
values. An algorithm to compute F(in) by Eq. (23) is very easy to establish
if all P(i,j) values are available.

CONCLUSIONS

All previous mathematical treatments of quiescent settling of floccula-
ting dispersions have postulated a particular breakage model. The
proposed Egs. (19) are general with regard to the breakage process. In



13: 09 25 January 2011

Downl oaded At:

MATHEMATICAL SIMULATION OF QUIESCENT SETTLING. | 2161

fact, no particular breakage model is postulated and it is possible to study
theoretically the influence of breakage on the settling velocity by the
introduction of the proper breakage function F(in).

In several simple cases for the surface erosion of elementary particles,
the breakage where an unstable i particle produces an N particle and an
(f — N) particle, equiprobable breakage, and breakage equivalent to
ignoring collisions between particles n and j, such that n +j > N, the
breakage function has been easily obtained.

It is also possible to define an infinity of other breakage models by
setting a number 7 of probabilities P(i,j) as given by Eq. (38). Then, after
calculating all other P(i,j) values by Egs. (35) and (36), one obtains the
breakage function by use of Eq. (23), after which quiescent settling may
be simulated.

The integration of the proposed Eqs. (19) has been done by Reis (9) in
comparing several breakage models; this will be discussed in a following
paper. This work shows the intuitively expected influence of the breakage
model on the particle size distributions along the settling column, which
is responsible for the global settling velocity, and it appears that this
mathematical formulation is a very useful tool for the theoretical study of
the settling of flocculating dispersions.

SYMBOLS

Latin

A cross-sectional area of the settling column

C wet solids volume fraction

Cp drag coefticient based on the dispersion properties

C, numerical concentration of n particles

C(n,j) concentration of n particles in cell or compartment j

"C; number of combinations of n elementary particles to form j
particles

c’ dry solids volume fraction

Ca number of »n particles generated by flocculation and breakage
per unit of volume and time

d, n particle diameter

F(in) breakage function: number of » particles produced by break-
age of one J particle

f vold factor

G(pg) number of gravitic aggregative collisions between the p
particles and the ¢ particles per unit of volume and time
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Greek

o Q

=

= ™

0
N4
Po
Pa
Ps

REIS, JERONIMO, AND WILSON

gravitational constant

number of independent entities P(i,j)

constant in Eq. (2)

velocity constant for the breakage of a j particle into an n
particle and a (j — ») particle in Eq. (1)

maximum size of particles (number of elementary particles in
the biggest aggregate)

number of collisions of / particles with j particles per unit of
volume and time

size of particles under material balance

total number of entities P(i,j)

probability of occurrence of the breakage mode i—j + (i —j)
Reynolds number based on the dispersion properties

n particles radius

time

velocity of n particles relative to the liquid

wet volume of an n particle

dry volume of an n particle

velocity of n particles relative to the laboratory

spatial coordinate: distance down from the top of the settling
column

collisions efficiency of aggregation
Kronecker delta

porosity

pure liquid dynamic viscosity
dispersion dynamic viscosity

pure liquid density

dispersion density

dry particle density

Other Symbols

X1
|1 X1
AX
il
z
by

greatest integer <X

absolute value of X

variation of variable X
productorium

summation

conditioned subscripts summation
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